How the Bionic Aircraft project advances additive manufacturing

The European “Bionic Aircraft” research project reached another milestone for additive manufacturing: components were printed directly from the CATIA V5 CAD system. This feat is made possible with the interface developed by CENIT. With the interface, there is no need to leave the development environment. All process steps, including post-processing, can be mapped in CATIA V5. Exact data are available in CATIA V5 to guide removing the support structures during 3D part post-processing, eliminating the need for elaborate reconstructions of the model and the support structures.

CAD model of the test item gray with support structure green.

Users can reduce their time and costs as a result of the leaner process.

CENIT CAD model test item

Says Jochen Michael, Senior Consultant at CENIT, “Support structures of additive manufactured components should not be removed manually in series production, but instead with NC machines. When creating NC programs of this type, the STL format, which in the past was used primarily for the representation of component and support structures in the 3D print data chain, is inadequate, because it can only represent the geometry imprecisely. In that case, the model and support structures must be reconstructed for refinishing, resulting in unnecessary expense. We can prevent this with the 3D print from CATIA V5 directly, because the exact geometry data for this post-processing is already available.”

Top view test item left test item sliced open right Fraunhofer IAPT

CENIT also provides support to engineers in the preparation of data from topology optimization. The CATIA V5 Slicer, newly developed by CENIT, slices the optimized component into layers. The contours of these slices are sent directly to the 3D printer via the post-processor developed by CENIT.

New support structures from Fraunhofer IAPT
Another positive interim result of the Bionic Aircraft project: The Fraunhofer Institute for Additive Production Technologies IAPT, developed “optimized” support structures.

Test items with support structures left sliced open test item right Fraunhofer IAPT

“Thanks to an optimized geometry, the new support structures do not need as much powder. We were inspired by nature, which is known for its material efficiency. The hierarchically branched structures with gradients that were created as a result reduce powder consumption by 70 to 90% as compared to conventional support structures. This allows us to save material and reduce production costs at the same time”, says Melanie Gralow of Fraunhofer IAPT. “An additional benefit is that they can be removed easier than conventional support structures. This makes post-processing faster, reducing the risk of damage to the component when they are removed.” The optimized structures are set up in CATIA V5 directly.
Bionic Aircraft: less emissions in aviation

Since 2016, the objective of the “Bionic Aircraft” research project funded by the European Commission (grant number 690689) has been to reduce emissions in the aviation industry. Ten international consortium partners from industry, research and development, among them also the IT specialist CENIT and Fraunhofer IAPT, are collaborating to come up with new methods and concepts. In this project, 3D print and bionic design play an important role in efforts to reduce the weight of aircraft components, thus reducing fuel consumption.

Bionic Aircraft
www.bionic-aircraft.eu