Overview
As the power density of electronics devices go up, so does the need for chip and system thermal management. One way to cool the components down is to add a heatsink. heatsinks uses conduction, convection and sometimes radiation to enhance the heat transfer from a hot surface to a cooler fluid. Many factors such as cost, manufacturability and weight need to be considered when choosing a heatsink. How the heatsink gets attached to the component is also critical.
During this 45 minute presentation, we will focus on how heatsinks work and how to design a heatsink while considering all the critical factors such as size, airflow, cost and attachment methods. We will also investigate how, using simulation, the heatsink design could be optimized and validated in the application environment. Engineers involved in board and chassis design would find this session very educational.
What You Will Learn
- How to design a heatsink for a specific electronics cooling application
- To visualize the airflow around the heatsink and identify potential bypass areas
- Estimate heatsink thermal resistance
- Use Response Surface Optimization to come up with the best heatsink design for the considered environment