German Aerospace Centre uses 3D printing in its exploration of Mars

The TransRoPorter, built at the Institute for Robotics and Mechatronics (Institut für Robotik und Mechatronik), is an exploration robot designed for unmanned flights to Mars and set for launch in four to five years. To successfully explore Mars with a robot, design and functionality are key factors to meeting mission objectives.

To develop a fully working prototype, the German Aerospace Centre (Das Deutsche Zentrum für Luft- und Raumfahrt e.V.) is working with Stratasys Ltd. (Nasdaq:SSYS), the 3D printing and additive manufacturing solutions company.

Using a Stratasys Fortus 900mc Production 3D Printer, the research team is 3D printing working prototypes to test the design and functions of the robot under simulated extreme conditions ahead of time.

Dr. Kaj Fuehrer, Head of System Building Technology South (Leiter Systemhaus Technik Süd), is developing and testing the 3D printed robot prototype together with his colleagues Dr. Stefano Seriani und Dr. Armin Wedler.

TransRoPorter Prototype with FDM 3D printed components

The TransRoPorter is made from two components: the moveable TRP Rover-Unit, made to navigate in unstructured terrain, and the Payload-Module (PM), which carries spare parts, communication technology and scientific tools.

In developing the TransRoPorter prototype, it is essential for the part to fit the design, be made to exact specifications and have specific material properties.

“For us it was clear, a prototype made out of metal was too expensive and complex in production,” explains Dr. Fuehrer.

Therefore the team decided on a 3D printed prototype, which is not only produced faster than the alternative out of metal, but also with less associated costs. The metal alternative would also need to be finished post-production – more work with additional costs.

TransRoPorter Box printed on the Stratasys Fortus 900mc 3D Printer

“In the planning of this project, we always preferred 3D printing technology,” Dr. Fuehrer continues. “It became evident to us that using 3D printing for the production of the TransRoPorter was truly the least expensive, fastest and most elegant solution. Everyone involved in the project is delighted with the outcome.”

Optimizing functionality

In addition to the time and cost savings, the functionality of the prototype was critical to Dr. Fuehrer and his team.

“Our prototypes are often very complex and typically push the boundaries of what is possible,” says Dr. Fuehrer. “Therefore, it is important to choose the appropriate production method and material, so that we can achieve the desired functionality without any limitations.”

Using the Stratasys Fortus900mc Production 3D Printer, the research team 3D prints large parts in FDM thermoplastic materials. According to Dr. Fuehrer, the ASA material was ideally suited for testing the TransRoPorter prototype, enabling the team to produce a strong enough Box to contain all the technology safely within.

“It was extremely important that the fit was right, that the box could be mounted to the tracks and the docking port worked,” he explains. “Using Stratasys FDM 3D printing technology, we found that the material basically has no distortion. The decision for ASA material was consciously made, as it is ideal for our purposes and handling.”

Stefano Seriani adds: “The stability of the ASA material also played a large role for us. We needed a fully functional prototype that could perform in all tests and withstand the strain of the design. The tough and rigid properties of the Stratasys material were therefore an ideal fit to test the TransRoPorter’s functionality for its journey to Mars.”

Gaining valuable knowledge

According to Dr. Fuehrer, 3D printing also supports other strategic goals. “A new technology leads to new thought processes. Over the past few years, many colleagues are already thinking in 3D and are involving additive manufacturing into plans for other projects they are starting with. This new knowledge has opened them up to a new set of possibilities within product development.”

Andy Middleton, President Stratasys EMEA, concludes: “We are proud to support the German Aerospace Centre (Das Deutsche Zentrum für Luft- und Raumfahrt) in achieving its mission to Mars. The project is a prime example of how our FDM 3D printing technology and materials can enable designs to be tested quickly in extreme conditions, particularly important in aerospace where complex geometries are required and each part needs to be qualified. We look forward to seeing how additive manufacturing will be adopted further along the development of the TransRoPorter.”