GE receives Air Force airworthiness qualification in under a year for first metal 3D-printed, critical jet engine part

GE Aviation received Engineering Change Proposal (ECP) approval from the US Air Force (USAF) for an F110 additively manufactured sump cover. The latest milestone in the USAF and GE’s pathfinder Pacer Edge program, this F110 component is the first engine component designed for and produced by metal additive manufacturing to be qualified by any US Department of Defense entity.

“Much like the GE90 T25 sensor that was an FAA certification pathfinder for metal additive manufacturing for GE Aviation in commercial aerospace, the F110 sump cover sets a solid foundation for many more additively manufactured component qualifications with GE’s military customers,” said Matt Szolwinski, chief engineer and leader of GE’s Large Military Engineering team.

Spiral development enhanced by experience and a digital thread
The airworthiness qualification of the sump cover brings Pacer Edge Phase 1a of the pathfinder to its conclusion. Part of the key to the accelerated qualification — in under a year — was GE’s decade of metal additive engineering and manufacturing expertise.

The team’s in-depth knowledge of commercial aerospace engine airworthiness for flightworthy 3D printed metal parts is proving instrumental in helping USAF establish its own robust process validation and certification processes for military airworthiness.

Close collaboration and knowledge sharing have enhanced USAF’s spiral development approach of continuously identifying, reverse engineering and developing technical data packages (TDPs) for increasingly complex and larger parts suitable for metal additive manufacturing.

Phase 1b is already underway and focuses on an out-of-production sump cover housing on the TF34 engine, which has been in service more than 40 years.

A digital thread also runs through the pathfinder. GE experts focused on digital twinning, maintenance-based predictive analytics and part lifecycle management expertise have been able to complement the USAF’s digital engineering strategy and in-house knowledge.

Tinker AFB as airworthiness metal additive supply chain hub
“Subsequent phases of the Pacer Edge program involves the establishment of a metal additive manufacturing supply chain at Tinker Air Force Base in Oklahoma, capable of producing airworthy components in support of the DoD’s sustainment needs,” said Lauren Tubesing, director – military accounts at GE Additive.

Recently, the Air Force’s Propulsion Directorate and RSO invested $10M to fund additional phases of the Pacer Edge program, leveraging the Defense Logistics Agency’s (DLA) Captains of Industry contract vehicle.

This funding will accelerate the development of the USAF’s organic AM capability and capacity to design and print flightworthy hardware for military engines, aircraft and support equipment. The Pacer Edge team is utilizing this capability to alleviate hard-to-source and obsolete spare parts constraints for legacy systems.

“The F110 sump cover was a terrific pathfinder, allowing us to exercise the USAF’s airworthiness process. There are numerous parts in queue that are ideal candidates for metal 3D printing. Next, we are focused on refining the airworthiness process, so it is as responsive as the technology,” said Melanie Jonason, chief engineer for the USAF’s Propulsion Sustainment Division.

GE Additive
www.ge.com/additive