COMSOL Inc. has announced the latest release of the COMSOL Multiphysics and COMSOL Server simulation software.
Version 5.3 provides simulation specialists with performance improvements and app design and deployment capabilities with new modeling and development tools, solvers, and user-driven features. In many cases, users will experience a speedup of ten times or more in software responsiveness, such as in preprocessing tasks for handling models with several thousand boundaries and domains.
Numerical simulation of the electrochemical potential distribution along an oil rig in sea water using the Boundary Element method.
Enhanced Efficiency with New Mathematical Methods and Solvers
With version 5.3 the boundary element method (BEM) is available for modeling electrostatics and corrosion effects. “This means that users can easily combine boundary element and finite element methods for greater flexibility in their multiphysics simulations,” said Svante Littmarck, President and CEO, COMSOL. The Boundary Element method enables users to simulate models with infinite domains and voids, as well as to quickly set up simulations that combine wires, beams, surfaces, and solids in the same model. Typical uses for this functionality include the modeling of electrical cathodic protection, cables, or capacitive sensors.
The algebraic multigrid (AMG) solver allows for solving large fluid flow problems with a single mesh level. The simulation process is more robust for problems such as fluid-structure interaction in a solar panel.
Users handling large CFD models will benefit from the new algebraic multigrid (AMG) solver implemented in version 5.3. The AMG solver requires only a single mesh level and is now the default option for many fluid flow and transport phenomena interfaces. Users modeling turbulent flows can benefit from more robust computations with the automatic treatment of walls. This feature blends high-fidelity low-Reynolds formulation with wall functions.
A Powerful Suite of Development Tools for Increased Productivity
The Model Builder now more rapidly handles geometry and mesh operations for models with large arrays and complicated solid operations in 3D. Users working with models and geometry requiring the use of several element types will benefit from the automatic generation of pyramidal elements to handle the transition between swept, hexahedral, prismatic, and tetrahedral meshes. A new option for automatic geometry defeaturing through virtual geometry operations is now available to users.
With the introduction of model methods in version 5.3, it is easy to automate repetitive operations directly in the Model Builder. The algebraic multigrid (AMG) solver allows for solving large fluid flow problems with a single mesh level. The simulation process is more robust for problems such as fluid-structure interaction in a solar panel.
The Application Libraries feature more than 50 new and updated tutorial models, allowing users to quickly adopt new features, tools, and modeling techniques. The tutorials span several areas, from permanent magnet motors, cables, and horn antennas, to supersonic flows, electronics cooling, and vibration and noise in a gearbox.
More Functionality for App Design and Deployment
The Application Builder allows simulation specialists to create apps based on their multiphysics models. The app interface can be easily customized and accessed via a browser or a Windows client, which connects to a local installation of COMSOL Server. Updates to COMSOL Server include comprehensive log files for user activity as well as a centralized cluster administration setting in the COMSOL Server web interface for easy setup of running apps on clusters. In the Application Builder, app designers can now define customized actions when clicking on plots in graphics objects, enabling the easy creation of interactive apps.
Cornell Dublier, founded in 1909 and a leading global manufacturer of high-quality capacitors, uses COMSOL Server for deploying computational apps to engineers at different sites around the world. “Using COMSOL Multiphysics and its Application Builder I can create models and build apps based on them. This allows other departments to test different configurations for their particular requirements and pick the best design”, comments Sam Parler, Research Director at Cornell Dubilier.
As a part of a food science curriculum, Cornell University is using simulation apps that connect via a browser to the school’s local installation of COMSOL Server. “Simulation apps bring new opportunities to education. In a food safety class, the app enables multidisciplinary learning where a biological science student can simulate many what-if scenarios realistically”, comments Prof. Ashim Datta, Department of Biological & Environmental Engineering, Cornell University.
COMSOL
www.comsol.com