AI-Driven Generative Design Redefines the Engineering Process

It can take even the most talented and experienced engineer’s designs to the next level.

PNY has submitted this article.

Today, artificial intelligence (AI) and machine learning (ML)-based systems enable applications ranging from junk mail or text filters to autonomous vehicles and robots. Engineering firms and their employees have utilized AI and ML to improve the engineering design process and create highly optimized and original products. Early adopters have benefitted from shorter design cycles, engineering productivity and originality, which has transformed entire engineering and product development workflows.

Let’s examine where traditional engineering design techniques and processes can be exceeded by generative design. We’ll consider some real-world examples to realize why increasing numbers of engineers are turning to AI and ML techniques to reinvent and optimize the design process.

Current Engineering Design Drawbacks

Standard engineering design techniques are well understood, widely utilized, and broadly applicable. The familiarity with—and success of—traditional approaches has delivered countless engineering breakthroughs that we benefit from every day. The engineering design process consists of several steps:

  1. Idea and conceptual breakthrough—Identify the problem and come up with a concept
  2. Create—Fabricate a rough prototype of the concept (ideally in silico)
  3. Refine design—Fill gaps with a comprehensive design (also ideally in silico)
  4. Computer aided engineering (CAE) Validation—Test the design to establish that it works (again in silico)
  5. Manufacture—Choose optimal production techniques and build the product at scale
  6. Launch—Release the product into the market, ideally with sales and marketing materials generated directly from computer aided design (CAD) files with graphic processing unit (GPU) accelerated photorealistic rendering, virtual reality (VR), and other visually compelling techniques to complement mainstream marketing tools

This process is inherently linear and glosses over significant drawbacks associated with this approach.

Extensive technical expertise is required at each step. Although advanced software is used, every dimension, specification, and feature must be exactly defined using elaborate, domain-specific software tools to realize a practical design that is ready to manufacture. Negative feedback loops occur when something goes wrong during the validation phase, which invariably delays projects. This can result in product recalls, redesigns, and wasted resources. Engineering and design creativity are limited by how quickly teams can iterate and generate new designs. With tight schedules, the normal ‘safe’ approaches reign, which significantly impedes long-term innovation.

Engineering software has ameliorated some of these issues, but engineers still have to complete each development phase. New technologies have the potential to amplify engineering and design productivity. Generative design can increase product development efficiency and utilize new fabrication techniques such as 3D printing (additive manufacturing).

Generative Design Changes Everything

Generative design utilizes AI and ML to transform tedious engineering design processes into a seamless interaction between computer and engineer. Topology optimization and simulation is automatically performed by the computer. Negative feedback loops are removed by lowering barriers to design, giving engineers more room to tackle challenges that require “common sense.”

Generative design can optimize a design for specific parameters, such as weight or durability, or commercial parameters, like production costs and aesthetic considerations. Most intriguing is its ability to enhance functionality (by design) during use. Startups such as additive flow have delivered applications that enable engineers to integrate different materials into one component while optimizing the topology in parallel. This results in superior products and shorter development times.

Generative design works best in conjunction with other technologies—generative design and 3D printing are a classic example, making it possible to quickly prototype and test new designs without a costly and time-consuming custom manufacturing run. 3D printers have no geometric boundaries, so extremely complex structures can be delivered.

3D printing also facilitates mass-customization. It can print products tailored to the specific needs of a single client. Imagine using AI to create a perfect part, just for your product design, without the economic drawbacks inherent in traditional subtractive manufacturing procedures.

Generative Design in Practice

Perhaps you’re designing a motorcycle swingarm. After coming up with a design area, connection points, and constraining parameters such as weight or torque, you spend hours calculating whether a proposed design would meet each of the engineering requirements—and that’s just for a single proposed design.

Airbus APWorks 3D-printed motorcycle swingarm. (Source: PNY.)

Airbus APWorks 3D-printed motorcycle swingarm. (Source: PNY.)

In addition to saving time, generative design algorithms can unlock entirely new approaches that weren’t feasible before.

To understand the generative design advantage, we must take a look at classic topology optimization algorithms. These minimize designated objects according to predetermined constraints, for instance volume or weight. Generative design algorithms utilize these steps but allow a wider range of constraints. Engineers add a greater variety of requirements, essentially a “fitness landscape” that drives design optimization. The workflow harnesses AI to analyze the use of different materials and manufacturing techniques.

Companies Using Generative Design

General Motors used generative design to reduce vehicle weight. GM worked with Autodesk to create 150 new designs for a seat bracket and chose a final design 40 percent lighter and 20 percent stronger than the original component.

Under Armour created a shoe with an ideal mix of flexibility and stability for athletic training—inspired by tree roots. Generative design realized an unconventional geometry that was 3D printed into shoes tested by more than 80 athletes in a fraction of the time it would have taken before.

Phillipe Starck used generative design to combine aesthetics and functionality. The company asked a simple question: How can we rest our bodies using the least amount of material? The resulting collaboration between designer and AI yielded an unconventional but highly effective chair design.

Generative AI designed chair. (Source: PNY.)

Generative AI designed chair. (Source: PNY.)

What to Consider When Getting Started with Generative Design

Generative design is a rapidly evolving field and startling new applications and products are being created daily, but not by simply cutting-over from traditional techniques. Introducing generative design requires readiness and change among multiple stakeholders. It creates new products, but disrupts traditional structures. The challenge of transitioning engineers to generative design applications should not be underestimated. The software can be difficult to master, and the learning curve can be steep.

Engineers and designers should consider software and hardware requirements for generative designs. There is a growing number of open source projects that provide generative design capabilities. Autodesk moved generative design out of the lab and integrated it into their products. Both Autodesk and open source approaches typically take advantage of the massive acceleration offered by professional GPUs like NVIDIA RTX, available from PNY Technologies.

“Generative design can take even the most talented and experienced engineer’s designs to the next level,” said Carl Flygare, NVIDIA Professional Graphics Marketing Manager at PNY Technologies. “It complements the latest additive manufacturing techniques, depends on unmatched AI acceleration provided by NVIDIA RTX GPUs, often delivers results that look organic and evolved, while exceeding counterparts developed with traditional software design tools. PNY is pleased to work with NVIDIA and leading Independent software Vendors (ISVs) to bring the potential and power of generative design to an ever widening engineering and product design community.”

Generative design is a powerful and innovative way to approach engineering design problems. While AI and ML can’t yet replace humans, they automate many of the tedious processes that create bottlenecks, ranging from design optimization to commercially acceptable aesthetics.

For more information, visit PNY.com.